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These results explore the asymptotic behavior of the density of a system of
coalescing random walks where particles begin from only a subspace of the
integer lattice and are allowed to walk anywhere on the lattice. They generalize
results by Bramson and Griffeath from 1980.(1) Since the probability that a
given site is occupied depends on how far that site is from the originating sub-
space, the density of the system at a given time must be re-defined. However, the
general idea is still that if the density is larger than we expect at a given time,
more coalescing events will occur, and the density will correct itself over time.

KEY WORDS: Coalescing random walk; hitting times; interacting particle
system.

1. INTRODUCTION

In 1980, Bramson and Griffeath(1) found the specific rates at which the
density of a system of coalescing random walks on the integer lattice Zd

decreases. This paper determines the rate at which the density of a restricted
system of coalescing random walks decreases, where the particles do not
begin from every site in Zd, but only from sites in a subspace of Zd.

A system of coalescing random walks on the lattice Zd is a process
consisting of particles which each start from a site in some subset D of Zd.
Each particle behaves like an independent rate 1 simple symmetric random
walk on Zd until it jumps to a site already occupied by another particle.
At this point the two particles coalesce into a single particle. Coalescing
random walks are dual to the voter model. (See refs. 2, 4, and 6 for more
information on this duality and interacting particle systems in general.)
Because of this duality, the probability that the original opinion of the
voter at the origin has survived until at least time t equals the probability
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that there is a particle at the origin at time t in the coalescing random walk
system with D=Zd. This probability is the density of the coalescing
random walk system. Let it be denoted by *t .

Bramson and Griffeath(1) used an important result by Sawyer(7) to
find the specific rates at which the density *t decreases to zero: as t � �,

1

- ?t
if d=1

*tt{ log t
?t

if d=2

2G(0, 0)
t

if d>2,

where G(0, 0), the Green's function, is the expected amount of time a
d-dimensional random walk spends at its starting point.

In contrast to ref. 1, this paper considers the behavior of the density of
particles in a system of coalescing random walks with D=H, where H is
an r-dimensional hyper-plane in Zd (for r<d ) parallel to the coordinate
axes (this is for convenience��any r-dimensional subspace will do). In the
case studied here, it is natural to consider the r-dimensional density of
particles p(t) in the system at time t. This paper defines p(t) to be the limit
of the expected number of particles in a large cube centered at the origin of
side length N divided by N r, the volume of the cube in Zr, as N � �. Note
that the usual d-dimensional density, such as used in ref. 1, is always zero.
In contrast to the density defined in Bramson and Griffeath's work, p(t) is
not the probability that a given site is occupied at time t. In the system we
consider, the probability that a given site is occupied at time t depends on
how far that site is from H, the originating hyper-plane.

We first have the following elementary result.

Theorem 1.1. In the case d&r>2, there is a positive probability
that a given random walk never coalesces with any other random walk.

The main result of this paper is the following.

Theorem 1.2. In the case d&r=1 or d&r=2, let

f (t)={
- t
log t

for d=2, r=1

- t for d&r=1 and d>2

log t for d&r=2.
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Then there exist constants $ and ; in (0, �), independent of t, such that
$�p(t) f (t)�;, for t larger than some t0 .

In this case, when d>2, the probability that a (d&r)-dimensional ran-
dom walk has not returned to its starting point by time t is on the order
of 1� f (t). Also note that f (t)rGt(0, 0), where Gt(0, 0) is the expected
amount of time a (d&r)-dimensional random walk spends at its starting
point until time t. We must make a correction in the case d=2 because
random walks are recurrent here. In the case d=2, any site visited by the
random walk will be visited on order of log t times in time t.

The proof of Bramson and Griffeath's result is based on the idea that
if the density of the coalescing random walk system is larger than we expect
at time t, the system will correct itself in an additional length of time, since
the coalescing events will be more frequent than usual. The proof of
Theorem 1.2 will also use this same general idea. However, the r-dimen-
sional density p(t) is not uniformly spread out over all of Zd. Yet, it will
still be true that we can expect most of the particles to be near each other
if the density is larger than we expect, and the coalescing dynamics will
force the system down.

The rest of the paper is organized as follows. Section 2 contains the
random walk estimates we will need. Section 3 contains the proof of
Theorem 1.1. Section 4 contains the proof of the lower bound of Theorem 1.2.
Sections 5 and 6 prove the upper bound in Theorem 1.2.

2. RANDOM WALK ESTIMATES

We shall see that the rate at which the density in our coalescing ran-
dom walk system decreases hinges upon how likely it is that two random
walks beginning a certain distance apart hit in a given time interval. Since
it is difficult to directly analyze the behavior of particles in a system of
coalescing random walks, we will compare the coalescing random walk
system to systems of independent random walks.

We couple (in the obvious way) the system of independent rate one
simple symmetric random walks [`s]s�0 and the system of coalescing rate
one simple symmetric random walks [!s]s�0 . If the coalescing random
walk !0 hits !i by time T, then the independent random walk `0 has hit `i

by time T. Thus we have that the probability of the latter event is at least
that of the former event. This simple inequality will allow us to use results
about independent random walks for coalescing random walks when it is
more convenient.

The first large deviation estimate that we will frequently use is a well-
known estimate on the distance that an independent random walk travels
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in time t. (This result can be found on p. 29 in ref. 5 for discrete time ran-
dom walks, and is easily extended to continuous time random walks.) For
any a>0, there exists a finite constant ca such that

P( |`t&`0 |�n)�cae&an�- t (1)

for all n, t>0. The constant ca is independent of n and t, but will depend
on a. Since we can manipulate a and ca , we will assume the distance n is
measured in the l� norm. This bound is particularly useful since it allows
us the flexibility to make the input of the exponential function as small as
we need by taking large a and ca .

The second estimate is a bound on the probability that a given random
walk is at the origin at a given time. If `x

t is the position of an independent
rate one simple random walk at time t, then for any a>0,

P(`x
t =0)�c2 \ c1

td�2 7 1+ exp {&a |x|

- t = , (2)

where c1 is a constant depending only on dimension, and c2 is a constant
depending only on a. To prove this inequality, we first note that if the inde-
pendent random walk `x

t is at the origin at time t, then it has either
traveled more than half the distance to the origin in the first t�2 units of
time or in the last t�2 units of time. The result then follows from Eq. (1)
and a weak version of the Local Central Limit Theorem (see refs. 3 and 8)
which implies that the probability that `w

t�2 is at a given site z at time t�2
is uniformly bounded above in w and z by c1t&d�2, for some constant c1 .

The last estimate we will need is a bound on the probability that two
random walks in the coalescing system meet by time T, where T is the
square of the original distance between them. We will use the next lemma
to do this.

Lemma 2.1. Let {i be the hitting time of the independent rate one
simple random walks `0 and ` i for i # Zd. Then we have the existence of
constants c1 and c2 independent of i such that for |i |>>1,

c1<P({i�|i | 2) log |i |<c2 for d=2, and

c1<P({i�|i | 2) |i |d&2<c2 for d>2.

Proof. Since `i&`0 is a rate 2 random walk started from i # Zd"[0],
we relate P({i�|i |2) to the expected amount of time a rate two random
walk begun at i spends at the origin until time |i |2+|i |. Let �̀ i represent a
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rate 2 random walk started from i # Zd, and I i (s) represent the expected
amount of time �̀ i spends at the origin until time s.

By the Strong Markov Property and Fubini's Theorem, (9)

E _|
|i |2+|i |

0
1 ( �̀ i

s=0) ds } { i�|i | 2&�|
|i |

0
P( �̀ 0

s =0) ds.

Thus

P({i�|i |2)�
I i ( |i |2+|i | )

� |i |
0 P( �̀ 0

s =0) ds
. (3)

To find an upper bound for I i ( |i | 2+|i | ), first note that for s=O( |i |2),
a weak version of the Local Central Limit Theorem (LCLT) again gives a
constant c such that P( �̀ i

s=0)�cs&d�2. Thus there exists a constant c such
that P( �̀ i

s=0)�c |i |&d. For s=o( |i |2), Eq. (2) implies that

P( �̀ i
s=0)�\ c

sd�2 7 1+ exp {&a |i |

- s = .

As long as |i |>>1, these preceding two statements imply the existence of
a constant c, not depending on i or s, such that P( �̀ i

s=0)�c |i |&d for all
s<|i |2+|i |. Thus I i ( |i |2+|i | )�c |i |2&d for some constant c independent
of i.

The upper bound is now complete in the case d>2 once we simply
note that the denominator of Eq. (3) is bounded below by a constant for
|i |>>1.

For d=2, the LCLT implies the existence of another constant c such
that P( �̀ 0

s =0)�cs&1 for s>>1. This implies that as long as |i |>>1,

|
|i |

0
P( �̀ 0

s =0) ds�c log |i | ,

and the result follows.
Alternatively, we obtain a lower bound for the probability that {i is

bounded above by |i |2 by first using the Strong Markov Property to write

P({i�|i |2)�
I i ( |i | 2)

� |i |2
0 P( �̀ 0

s =0) ds
. (4)
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For the numerator, the LCLT implies that given fixed k, there exists
a constant c such that P( �̀ i

s=0)�c�|i |d for s�k |i | 2. Thus we have another
constant c such that

I i ( |i |2)=|
|i |2

0
P( �̀ i

s=0) ds�
c

|i |d&2 .

Since random walks are transient in d>2, we can now conclude
P({i�|i |2) is bounded below by c |i | 2&d for some other constant c.

In the case d=2, by Eq. (2) there exists a constant c such that

|
|i |2

0
P( �̀ 0

s =0) ds�|
|i |2

0 \c
s

71+ ds.

Thus as long as |i |>>1, the result follows. K

3. PROOF OF THEOREM 1.1

The basic idea of the proof is as follows. We handle sites that are near
or far from the origin separately. The sum of probabilities of hitting walks
started from sites far enough from the origin will be less than one. By con-
ditioning on a well-chosen event A, we can still show that the sum of
probabilities of hitting other walks will be less than one even after including
the sites near the origin.

We create the distinction between the ``near'' and ``far'' sites by defining
the event A as follows. Let B be the box in Zd centered at the origin with
side length N, where N is some large constant to be determined later. Fix
a direction orthogonal to the hyperplane H from which the walks begin.
Let A be the event that the coalescing random walk !0 travels very far in
this direction in time 1, and all other random walks started in B remain
frozen during that time. Specifically, for some constant m to be determined
later, let

A=[!0
t # [0� ]_[0, m] for 0� # Zd&1 and t<1]

& [!0
1=(0� , m)]

& [!x
t =!x

0 for x # B"[0] and t�1].

Since A occurs with positive probability, we can prove the theorem by
showing that given A, the probability that a given random walk avoids all
other random walks is positive. Let _x be the hitting time of the coalescing
random walks !0 and !x.
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Fix a site x # H outside the box B. If the coalescing random walks !x

and !0 coalesce before time 1, we can use Eq. (1). If they hit after time 1,
we can use Lemma 2.1 (recall that since d&r>2, d>2). Thus for x # H"B,

P(_t, !x
t =!0

t | A)�e&c |x|+
c

|x|d&2 . (5)

For nonzero sites x # H & B, the coalescing random walk !x is frozen
until time 1. Lemma 2.1 implies that

P(_t, !x
t =!0

t | A)�P(_t, `x
t =` (0, m)

t )�
c

md&2 , (6)

for some constant c.
Equations (5) and (6) imply that conditioned on A, the probability

that the coalescing random walk started at zero ever hits any other particle
is bounded above by

c _ :
x # H"B {e&|x|+

1
|x|d&2=+ :

x # B"[0]

1
md&2& . (7)

Since the number of sites in H distance n from the origin is bounded above
by cnr&1 for some constant c, Eq. (7) is bounded above by

c :
n>N {nr&1e&n+

nr&1

nd&2=+
(N r&1)

md&2 .

Since d&r>2, N can be chosen so that the first summand above is less
than 1�3. We can then choose m so that the second summand is also less
than 1�3. Therefore, the probability that !0

t avoids coalescing with any
other random walk started on H is positive.

4. THEOREM 1.2: PROOF OF THE LOWER BOUND

Fix t>0. To show the density must be at least $�f (t) for some $ inde-
pendent of the fixed t, we compare the density at time t of our system of
coalescing random walks [!t] t�0 with the density at time t of a sparse
coalescing random walk system ['s]s�0 defined below. This sparse system
will begin with random walks starting from sites far enough apart so
that the initial density of the system is already on the order of 1� f (t),
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and that the probability that a given particle coalesces with any other par-
ticle by the fixed time t is as small as we need.

Recall that we defined

f (t)={
- t
log t

for d=2, r=1

(8)
- t for d&r=1 and d>2

log t for d&r=2.

For some large scaling index N that will be fixed later, let ['s]s�0 consist
only of particles begun from sites in H that are distance Nf (t)1�r apart from
each other (recall t is fixed). Thus the initial r-dimensional density of the
'-system is c� f (t) where c is a constant depending only on N. By making
N large enough, the second condition above will also be satisfied��if the
chance of coalescing is small enough, the '-density will remain bounded
below by something on the order of f (t)&1.

Specifically, let k=w f (t)1�rx and let ['s]s�0 be the system started
from particles only at sites iNk for i # H. Let \(s) be the r-dimensional den-
sity of this system (defined similarly to p(t)), and let P\ be the probability
law associated with this sparse system. Let 'x

s be the position at time s of
the random walk started at x in the sparse system.

As noted above, the choice of N will be made from a bound on the
probability that '0 coalesces with any other particle by time t.

Lemma 4.1. The probability that a given particle in the sparse
'-system coalesces with any other particle by the fixed time t is no more
than cN 1&d where c is some constant independent of t.

Proof. For d>2, and i # H such that |iNk|<kd&1, Lemma 2.1
implies

P\(_s�t : '0
s =' iNk

s )�
c

|iNk|d&2 .

For |iNk|>kd&1, we find a nice bound by noting that the probability that
two random walks hit by time t is the probability that they hit given that
they come within radius - t of each other times the probability they come
within radius - t of each other. The time they have to hit after coming
within - t of each other is random but is bounded by t, so we can use
Lemma 2.1 to bound the former probability and Eq. (1) to bound the latter
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probability. Thus the probability that a given particle has coalesced with
another by time t (the same t fixed above), is bounded above by

:
|i | <(kd&2�N )

c
( |i | Nk)d&2+ :

|i |�(kd&2�N )

2 exp {&(|i | Nk&- t )

2 - t = c

- t d&2
, (9)

where i # Zr and c is some constant independent of t.
By making a change of variables, and by using the fact that

r&1�d&2, we get that

P\(_x # H, s�t : '0
s ='x

s )�
c

N d&1+
c

N r ,

where c is independent of t.
For d=2, the computation is similar but much simpler. In this case we

conclude that

P\(_x # H, s�t : '0
s ='x

s )�
c
N

,

where c is some constant independent of t. K

To conclude the proof of the lower bound in Theorem 1.2, we first
note that \(s), the density of the sparse system, is bounded below by \(0)
times the probability that a given particle has not coalesced in time s. By
Lemma 4.1, one can choose N such that the probability that '0 does not
coalesce with any other particle is greater than 1�2. Since \(0)=(1�Nk)r,
we can now choose $$ such that \(0)>$$�f (t). Thus since the '-system is
dominated by our !-system,

p(t)�\(t)�\(0) P\(\x # H : '0
t {'x

t )>
$$

2f (t)
. (10)

5. THEOREM 1.2: PROOF OF THE UPPER BOUND IN THE
CASE THAT THE CO-DIMENSION IS 1

To obtain an upper bound on the density of particles as time
increases, we show that if the density of particles is too large at a large
time t, the coalescing dynamics will correct the system and force the density
down in an additional amount of time t. However the coalescing dynamics
can only affect particles ``close'' to each other. Some particles will be quite
far from any other particle at time t and thus unlikely to hit any other par-
ticle in this additional time.
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In particular, we expect independent rate 1 random walks to travel
about distance - s in time s. Thus, to differentiate particles that have
moved ``too far'' from H in time s, we define

L(s)=Zr_[&M - s , M - s ]d&r,

for some large integer M to be fixed later. L(s) is a slab surrounding H��by
making M large, we control the proportion of particles moving outside
L(s) by time s (and thus away from the bulk of the other random walks
in the system). This is the key difference between [!s] and the system
studied in Bramson and Griffeath's paper.(1) In a process where random
walks are begun from every site in Zd, it makes no difference whether or
not a particle makes a large deviation��it will always be surrounded
by other particles since the random walks are evenly distributed across all
of Zd.

Since some of the particles in [!s] will stray far from any other, we
split particles at time 2t into three main categories:

1. those outside L(t) at time t,
2. those in L(t) at time t, but that have traveled outside L(2t) at some

point at or before time 2t,
3. those in L(t) at time t, and that have remained in L(2t) through

time 2t.

To show that the density of particles that have strayed far from H is
as small as we need in the case d&r=1, we will need to introduce a score
function for particles to emphasize the large distance such particles have
traveled. Each particle that is outside of L(s) at time s will have a score
associated with it: a particle at (0, y) for 0 # Zr and y # Zd&r will be
assigned the score e | y|�- s . Notice that the score of such a particle will be
at least eM. Since it is unlikely that a particle will continue to remain out-
side L(s) as s increases, a high score will be forced down as the ratio of
position to the square root of time decreases.

To take advantage of the score function, we will not study p(s), the
density at time s, directly. Since an equivalent definition of p(s) is the
expected number of particles in [0� ]_Zd&r, where 0� # Zr, we can bound
p(s) from above by

q(s)=E _ :
| y|>M - s

1[_x # H : ! s
x=(0, y)] e | y|�- s&

+E _ :
| y| �M - s

1[_x # H : !s
x=(0, y)] & . (11)
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We shall call this the revised density of particles. Let q1(t) be the first sum-
mand and q2(t) be the second. Our ultimate goal is to show that if the
revised density of particles is much larger than we expect at time t, then in
an additional t units of time, it will be forced down. Note that q(2t) is the
sum of the revised densities of the three categories.

Since the probability of leaving L(s) by time s is exponentially small
in M, the next two lemmas will establish that the density of the particles
in the first two classes will be quite small even if we ignore the coalescing
dynamics, as long as M is chosen large enough.

Lemma 5.1. At time 2t, the revised density of particles in category
1 is bounded above by ;1 q(t), where ;1=c1 e&c2M, for some constants c1

and c2 independent of t and M.

Proof. Using Eq. (11), the revised density of category 1 particles at
time 2t is written as a sum indexed over the position of the particles at time
2t. Since we are just looking for an upper bound, we can actually ignore
the fact that some particles in category 1 will have died in the time interval
[t, 2t]. Thus for the purposes of this proof, we can re-index the sum using
the position of the particles at time t instead. By the Markov Property, the
density of category 1 particles at time 2t can be bounded above by

:
| y|>M - t

E1[_x # H : ! t
x=(0, y)] exp { | y|

- 2t = E exp { |!0
t |

- 2t= . (12)

The expectation term in Eq. (12) is in fact independent of t. To see
this, first note that if |!0

t |�- 2t is in the annulus [n�x<n+1], then !0
t

has moved at least distance n in time t. Thus

E exp { |!0
t |

- 2t=� :
�

n=0

exp[n+1] P(|!0
t |�n - 2t ). (13)

By Eq. (1), there exists a constant ca such that P( |!0
t |�n - 2t ) is bounded

above by ca exp[&a - 2n] for any choice of a. The power of Eq. (1) is
clear: we can choose any a such that this sum converges. Therefore Eqs.
(12) and (13) imply that the revised density of particles in category 1 at
time 2t is bounded above by

c :
| y|>M - t

E1[_x # H : !t
x=(0, y)] exp { | y|

- 2t=�ce&M�4q1(t)<ce&M�4q(t). K
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Lemma 5.2. The revised density of particles in category 2 at time
2t is bounded above by ;2 q(t), where ;2=c1e&c2M, for some constants
c1 , c2 independent of M and t.

Proof. Suppose a category 2 particle has traveled outside L(2t) by
time 2t to a site (0, y), for 0 # Zd&1 and y # Z such that | y|>M - 2t , and
suppose (0, y) is the farthest such point to which it travels by time 2t.
Let r # (t, 2t] be the time at which it (first) hits this maximum. Thus this
random walk has traveled at least distance | y|&M - t in time r&t. Using
Eq. (1), the probability of this event is bounded above by

c1 exp {&4
| y|&M - t

- r&t =
for some constant c1 . (Again we use the flexibility of choosing any a in Eq.
(1).) Such a particle will also gain a score at time 2t of at most
exp[ | y|�- r ].

A little algebra will show that there exists a positive finite constant c2

such that

&4 \ | y|&M - t

- r&t ++
| y|

- r
�&c2M. (14)

This inequality thus implies that the revised density of particles that were
in L(t) at time t but move outside L(2t) at some point before time 2t is
bounded above by

c1e&c2Mq2(t)�c1 e&c2Mq(t). K

What remains is to consider the density of category 3 particles��those
that were in L(t) at time t and never leave L(2t) through time 2t. For con-
venience, call this class N and its density at time s, qN (s). We need to
show that if qN (s) is too large for some time s, t�s�2t, then the coalescing
dynamics will force it down. We start by partitioning [t, 2t] into pieces of
time length t=

2, where

t=={= � t
log t

if d=2
(15)

=t1�d if d>2

for a small constant = chosen later. Since particles that are at least distance
t= away from any other particle at time s are unlikely to coalesce by time
s+t=

2, we will call these particles isolated at time s.

108 McDonald



The density of isolated particles is small simply because only a limited
density of boxes with volume t=

d can fit in L(2t)��thus the following lemma
is easily proved.

Lemma 5.3. Let qi (s) be the density of particles in class N that are
isolated at time s for t�s�2t. Let :0 be chosen so that cM�=d:0<1�2.
Then if the density of class N particles at time s is more than :0� f (s),
qi (s)<qN (s)�2.

The final building block for the lower bound is as follows

Lemma 5.4. For :0 as chosen as in Lemma 5.3, either qN (2t) f (2t)
�:0 or qN (2t)�qN (t)�8.

Proof. Recall that if we let

g(|)={log |
|d&2

if d=2
if d>2,

Lemma 2.1 allows us to choose a constant # independent of t= , x, and y
such that the probability that two particles at most distance t= apart at
time s coalesce by time s+t=

2 is is bounded below by #�g(t=).
For s # [t, 2t] let qc(s+u), u�0, be the density of particles remaining

at time s+u that are in class N but not isolated at time s. Then

qc(s+t=
2)�qc(s) \1&

#
2g(t=)+ . (16)

By Lemma 5.3, if qN (s) f (s)>:0 , then qi (s)<qN (s)�2, and thus qc(s)�
qN (s)�2. Therefore Eq. (16) implies

qN (s+t=
2)�qi (s)+qc(s) \1&

#
2g(t=)+�qN (s) \1&

#$
g(t=)+ , (17)

where #$=#�4, as long as qN (s) f (s)>:0 .
What Eq. (17) provides us with is a ``bootstrap'' algorithm that allows

us to step in time increments of length t=
2 from time t to 2t as long as

qN (t+ jt =
2) f (t+ jt=

2)>:0 for j=0, 1,..., t�t =
2. Thus we can conclude that

either qN (2t) f (2t)�:0 or that

qN (2t)�qN (t) \1&
#$

g(t=)+
t�t=

2

�qN (t) exp { &#$t
t=

2g(t=)= . (18)

To finish the proof, one can choose = such that the exponential term in
Eq. (18) is less than 1�8. K
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So far we have shown the following: at time 2t the revised densities of
category 1 and 2 particles are very small with respect to q(t); and, if the
density of category 3 particles is too large at time t, then by time 2t, this
density will be reduced. Two questions remain: how much do these results
reduce q(2t), and is the resulting decrease in the total revised density
enough to conclude Theorem 1.2?

To answer the first question, we know from Lemmas 5.1 and 5.2 that
q(2t)�(;1+;2) q(t)+qN (2t), and further that we can choose M large
enough that ;1+;2<1�8. Therefore since f (2t)�- 2 f (t) for any d�2,

q(2t) f (2t)�\q(t)
8

+qN (2t)+ - 2 f (t). (19)

Since M and = have finally been chosen, we can choose :0 as in
Lemma 5.3. We now see that if qN (2t) is larger than the combined den-
sities of the other two categories of particles and it is larger than :0� f (t)
then the fact that it is forced down implies the entire density at time 2t
has been forced down. More specifically, in the case that qN (2t)>q(t)�8,
and qN (2t) f (2t)�:0 , Lemma 5.4 implies qN (2t)�qN (t)�8�q(t)�8. Thus
Eq. (19) implies q(2t) f (2t)�q(t) f (t)�2.

If instead, qN (2t) is larger than q(t)�8 but still below the threshold
level (qN (2t) f (2t)�:0), then Eq. (19) implies q(2t) f (2t)�2:0 .

Finally if qN (2t) is smaller than the combined densities of the other
two categories, Eq. (19) immediately implies that q(2t) f (2t)�q(t) f (t)�2.

To answer the second question, let

;= max
1�t�t0

[q(t) f (t), 4:0].

Suppose at some time t�t0 , q(t) f (t)>;. But then for any n such that
t�2n<t0 ,

q \ t
2n+ f \ t

2n+>2n;,

and we have a contradiction of our definition of ;.

6. THEOREM 1.2: PROOF OF THE UPPER BOUND IN THE
CASE THAT THE CO-DIMENSION IS 2

The proof in this case is in the same spirit as the one for d&r=1.
From the lower bound we have seen that the density is decreasing at a much
slower rate. Thus to see that the system will correct itself if the density is
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larger than we expect at time t, we need to wait until time t2, not 2t. At
any time s>t log2 t we again split the existing particles into classes:

1. those outside L(s),

2. those inside L(s) but ``isolated'' (this term will be redefined), and

3. those inside L(s) and not isolated.

These categories are similar to those in Section 5, but there are important
differences. Categories 1 and 2 from Section 5 are lumped together into
Category 1 here. We can do this because we can do away with the score
function and directly show that for any time s>t log2 t, the density of par-
ticles outside L(s) at time s is very small in comparison to p(t). A further
difference in these classes is that in Section 5 we were able to treat isolated
and non-isolated particles in L(s) together. In this case, we must treat them
separately since t= cannot be constant over the entire time interval [t, t2].

As before, we treat each category in turn with a similar sequence of
lemmas. Lemma 6.1 is analogous to Lemmas 5.1 and 5.2. Lemma 6.2 is
analogous to Lemma 5.3. Finally Lemma 6.3 is analogous to Lemma 5.4.

We begin with category 1.

Lemma 6.1. Let po(s) be the density of particles outside L(s) at
time s. For t larger than some t0 , and for s>t log2 t, po(s) is bounded
above by ;1 p(t), where ;1=c1e&c2M.

Proof. Suppose that !s is a particle that is outside of L(s) at time s.
Then either |!s&!t |�M - s�2 or |!t |�M - s�2.

In the first case, the event |!s&!t |�M - s�2 is independent of the
event that !t is alive at time t by the Markov Property. Thus Eq. (1) and
the Markov Property imply that the density of particles that fall in this
case is bounded above by

cp(t) exp {&M - s

2 - s&t =�c exp {&M
2 = p(t)

for some constant c.
In the second case, the density of particles !t such that |!t |�M - s�2

is bounded above by the density of such particles in the independent
system [`t]. Thus Eq. (1) implies this density is bounded above by

P \ |`t |

- s
�

M
2 +�exp {&M log t

2 = , (20)

as long as s>t log2 t.
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Since Eq. (20) is bounded above by ct&1, and since Eq. (10) implies
p(t)>>t&1, there exists a t0 such that for t�t0 , this density is bounded
above by exp[&M�4] p(t), for s>t log2 t. K

We now consider the particles that are in L(s) at time s. As in the case
d&r=1, we want to call a particle isolated at time s if it is at least distance
t=(s) away from any other. Here we would like t=(s) to be =(s log s)1�d to
ensure that the density of these particles in L(s) is like c� log s, for some
small constant c. But this strategy presents a few bookkeeping problems.
Instead we will divide the interval of time [t log2 t, t2] into disjoint regions
where t=(s) is constant. For each r=0,..., log2 (t� log2 t)&1, let Tr=
2rt log2 t. For s # [Tr , Tr+1), let

t=(s)==(Tr+1 log Tr+1)1�d, (21)

where = is some small constant to be chosen later. Define a particle to be
isolated at time s if there is no other particle within t=(s) away. Again,
simply by volume restrictions, we have the following lemma.

Lemma 6.2. Let pi (s) be the density of particles in L(s) at time s
that are isolated at time s for s # [Tr , Tr+1). Let :0 be a constant such that
cM2�=d:0<1�4. If p(s) f (s)>:0 , then pi (s)<p(s)�4.

The last lemma is our bootstrap lemma for co-dimension d&r=2.

Lemma 6.3. For :0 chosen as in Lemma 6.2, either

p(t2) f (t2)�:0 or p(t2) f (t2)<p(t) f (t)�2

for t greater than some t0 .

Proof. Let pc(s) be the density of particles in category 3 for
s # [Tr , Tr+1). By a similar argument as in the proof of Lemma 5.4, if
pc(s)�p(s)�2, then po(s)+ pi (s)�p(s)�2, and Lemma 2.1 implies

p(s+t=
2)�p(s) \1&

#$
t=

d&2+
for all s # [Tr , Tr+1), where #$=#�4.

Again as argued in the proof of Lemma 5.4, we can then show that
either p(Tr+1) f (Tr+1)�:0 , p(t2) f (t2)�p(t) f (t)�2, or that

p(Tr+1)�p(Tr) exp { &#$
4=d log t= . (22)
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From Eq. (22), we can conclude that either p(t2) f (t2)�:0 , p(t2) f (t2)�
p(t) f (t)�2, or that

p(t2)�p(T0) exp {&#$ log(t� log2 t)
4=d log t =�p(t) exp {&#$

8=d = (23)

for t greater than some t0 . If we choose = such that exp[&#$�8=d ]�1�4, we
have that either p(t2) f (t2)�:0 or that

p(t2) f (t2)�
p(t)

4
log t2�

p(t) f (t)
2

. K

By a similar argument as in the case where d&r=1, this decrease in
the overall density gives us the upper bound.
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